
A CGAL implementation of the Straight Skeleton of a Simple
2D Polygon with Holes

Fernando Cacciola

SciSoft
fernando_cacciola@hotmail.com

This short paper overviews the CGAL implementation of the Felkel’s algorithm [Fe98] for the
construction of a Straight Skeleton on the interior of a 2D Polygon with Holes.

The Straight Skeleton: Short Overview.

A Straight Skeleton is a unique partition of the plane induced by a set of planar straight-line
figures. It was first introduced by Aichholzer et. al in 1995 for the interior of a polygon [Ai95], and
generalized later for general (straight-line) figures in the plane [Ai98].

Consider the continuous inner offsetting of a simple (non self-intersecting) polygon. In such a
wavefront or grassfire transformation, edges either contract or expand w.r.t. a vertex depending
on the internal angle formed at it. At non-reflex internal angles (<PI), edges contract, while at
reflex internal angles (>PI) edges expand. (In the degenerate case of a pseudo-vertex of angle PI
the edge neither contracts nor expands). Under this transformation vertices move along the
angular bisector of the lines subtending the edges. The topology of each subsequent offset
polygon remains unaffected unless one of two possible things occur: (a) The edges Ei-1 and Ei+1 —
adjacent to an edge Ei — collide and Ei vanishes, (b) An edge Ei collides simultaneously with two
consecutive edges Ej and Ej+1 which are expanding, splitting Ei at the intersection point. These
two possible events changes the topology of next offset: after an Edge Event, the polygon has less
edges; and after a Split Event, it is split in two different polygons.

The Straight Skeleton (SK) is a tree-like topological and geometric structure which synthesizes the
wavefront described above.
The traces of the moving vertices form the bisectors of the SK, and the instants or points were
events occur form the SK nodes. Skeleton nodes connect the bisectors (three or more). Each
bisector, because it is given by the trace of a moving vertex, is defined by two edges and it’s a
segment of the angular bisector between the lines subtending the edges. Contour bisectors are
those defined by edges which are consecutive in the source polygon while Inner bisectors are those
defined by edges which are consecutive not in the source by in the subsequent offset polygons.
Because in the wavefront transformation all edges move at the same speed along their respective
perpendicular directions, events—which are the result of the collision between edges—occur at an
instant which is uniquely given by the offset distance of the colliding moved edges to the lines
subtending their original versions. Therefore, events are defined by the simultaneous collision of
three or more offset edges, either contracted or expanded. Since edges contract or expand, the
offset distance that corresponds to each event is the Euclidean distance between the lines
subtending the edges and not between the edge’s segments. Such an offset distance, or instant,
uniquely determines the order of the events: events which correspond at a shorter distance (or a
prior instant) occur first. It is easy to see that since any event changes the topology of the moving
polygons, events can not be entirely foreseen ahead of time since the occurrence of an event
directly affects the feasibility of foreseen events. At least, any foreseen event might be no longer
applicable. Furthermore, the correctness of the algorithm primarily depends on the correct ordering
of events.

The SK is topologically and visually similar to a Voronoi Diagram (VD). It partitions the polygon
in faces, each of which is uniquely associated with a polygon edge. Unlike a VD, non-terminal
reflex vertices do not have their own faces: all faces corresponds to edges (or terminal vertices for

the generalized case of an open figure). It is not a VD-like structure because it is not defined by a
function of the distance between edges (though it is dependent on the distance between the lines
subtending the edges).

Since the very definition of a Straight Skeleton is based on the continuous wavefront or grassfire
propagation of the edges, it is specially suited for polygon offsetting. In particular, it can be used to
obtain the so-called “mitered” offsetting were corners remain as such in the offset polygon (this is
unlike the “rounded” offsetting produced using a Voronoi Diagram).
If the polygon is convex, the SK is exactly the same as the VD. Otherwise, reflex vertices have the
effect of pushing the inner bisectors away from the vertex, shifting the “axis” from the center.
Therefore, it is not suited for Medial Axis applications were “medial” is required to mean
equidistant to the boundary. However, some Medial Axis (MA) applications use the MA as a shape
descriptor. In this case, the SK offers the exact same synthetic power as a VD: A polygon can be
reconstructed from a SK, thus a lower resolution polygon can be reconstructed from a pruned SK.

Figure 1: (a) Straight Skeleton (b) Mittered Offset polygons based on the SK

The representation of the Straight Skeleton in CGAL.

Since the SK is a partition of the polygon in faces associated with edges, it is natural to use a
CGAL Halfedge Data Structure as the basis for the SK representation. Thus, the SK itself is given
as a specialized HDS (a derived class).

Source polygon vertices and SK nodes are both represented as Vertices of the HDS.
Thus, A SK::Vertex holds: a point, properties which indicates if it is a non-convex/convex border
vertex or an inner node, links to the incoming/outgoing edges and a link to the outgoing bisector.

Source polygon edges and bisectors are both represented as Halfedges of the HDS.
A halfedge is actually a handle wrapping the body which implements either an edge or a bisector.
The handle itself provides the interface to query the common properties of both edges and
bisectors: the segment/line defining the geometry of the edge/bisector, a property telling if it is a
polygon edge or a bisector, and a link to the defining polygon edge (if this is a polygon edge
already the link points to itself)

Just like any HDS, the SK user can traverse any face by following the halfedges. Additionally, the
SK tree can be traversed also by following halfedges and faces.

The Implementation of the construction algorithm in CGAL

The construction algorithm implemented is essentially the same published by Felkel [Fe98], with
the addition of Vertex Events as described in [Ep99] (the details of the algorithm is out of the
scope of this presentation)

Roughly, the algorithm can be sketched as follows:

1. Initialization
• Compute initial angular contour bisectors.
• Compute initial Events, placing them in a priority queue ordered by their instants

o The Split Events for all reflex contour bisectors.
o The initial set of Edge Events for all consecutive intersecting contour bisectors.

2. Propagation
• Process each Event in turn. This processing generates new bisectors which in turn

produce new EdgeEvents.

As you can see from the sketch, the algorithm requires special predicates (for instance, to order the
instants of the events) and constructions (for bisectors and events).

As with most geometric algorithms, its correctness can be made a exclusive function of its
predicates if these are chosen carefully. In our case, the fundamental predicates are the relative
ordering of events. It suffices that these predicates report correct answers to guarantee the
correctness of the algorithm, even if the input polygon is not in general position (because these
predicates are not convexity tests).

These predicates operate on polygon edges, bisectors and bisector intersections, so the algorithm
requires special constructions that cooperate with the predicates. Therefore, the predicates and
predicate-related-constructions needed by the algorithm are factored out from the algorithm itself
and encapsulated on a traits class:

In order to allow the algorithm correctness to depend solely on the predicate correctness, the traits
abstracts away the predicates input by means of special objects which are constructed by the traits
class itself. That is, the predicates do not operate directly on intersection points or distances but on
objects which encapsulate these.
The following are the objects constructed by the traits which participate in the predicates:

Bisectors: The trait is responsible for defining and constructing the geometric aspect of a bisector.
(The topology of a bisector, i.e., its combinatorial structure, is governed by the algorithm)

Intersection positions: An Edge Event occurs when two non-consecutive edges collide
simultaneously with some non-opposite edge. An Split Event occurs when two consecutives edges
collide simultaneously with some opposite edge These can be seen as the intersection of two
bisectors, but is actually the simultaneous intersection of 3 offset edges. A performance-targeted
traits can actually compute and store the intersection point, but a robustness-targeted
implementation can simply cache a reference to the source edges involved in the simultaneous
intersection and defer computations to the predicates operating on positions.

Event-instants: The ordering of events is given by the offset distance between the polygon edges
and the Positions where the event occurs. A performance-targeted implementation can compute
and store this distance, but a robustness-targeted implementation can simply cache the source
edges involved in the simultaneous intersection that produces the event and defer computations to
the predicates.

Figure 2

(a) Edge Event: Non-consecutive edges E0 and E2 collide and E1 collapses.
(b) Split Event: Consecutive Edges E0 and E1 collide simultaneously with opposite edge E3, which gets split.

The predicates offered by the traits operate on the objects mentioned above. Among other things,
they order Positions (globally and w.r.t. a given bisector) and Event Instants, determine whether a
Position in inside an offset region (the cone of influence of a contracting/expanding edge),
determine whether Positions or Bisector are coincident, etc...

The default traits class which is currently implemented has been designed for fast unfiltered built-
in floating-point types. Therefore, it actually computes bisector lines, intersection points and
Euclidean distances. In order to compute bisector lines, it requires angle manipulation; and in order
to test whether two positions are coincident, it requires a tolerance-based point equality test.
Consequently, the default traits is parameterized on a Kernel Extension which adds support for a
polar type and angle-based computations plus a user-defined point equality comparator.

Note, however, that the Kernel Extension provided is needed only for the default Traits, which is
designed to trade robustness for speed. Unfortunately, such a speed-oriented traits is bound to fail
in degenerate and near degenerate cases. Degenerancies in this context comes from a higher (>3)
multiplicity of coallisions or aparent coallisions. For example, cocircular or colinear vertices
induce events at the same instant, but due to numerical issues these theorically equivalent instant
will be computed with slightly different values and the ordering of the events will be affected,
possibly compromising the correctness of the result. Note however that colinear or cocircular
vertices do not represent a degenerate case in the RealRAM (with exact arithmetic).

Alternative traits implementations are possible and have been explored but were not actually
implemented: Angle-base computations can be avoided if the Bisectors are represented without
explicit geometry. Since the geometric definition of a bisector (and associated geometric
operations) are defined by the Traits, this alternative characterization is possible without affecting
the algorithm. Such a Traits require the intersection computations to operate on the edges directly,
solving a system of linear equations. Similarly, Positions and Instants can be represented without
any explicit value, deferring computations to the Ordering of those, which can be solved using
only the source edges by solving a system of linear equations.

References

[Ai95] O. Aichholzer. et. al. "A Novel Type of Skeleton for Polygons", 1995.

[Ai98] O. Aichholzer. et. al. “Straight Skeletons for General Polygonal Figures in the Plane”,

[Fe98] P. Felkel. et. al. "Straight Skeleton Implementation", 1998.

[Ep99] D. Eppstein. “Raising roofs, crashing cycles, and playing pool: Applications of a data
structure for finding pairwise interactions”

